skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Shah, Nihar B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)
    Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly optimized using stochastic policy gradients along with an entropy maximization objective. In contrast to previous work, we define and study deterministic policy gradients for optimiz- ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method, denoted Gaussian Mixture Deterministic Policy Gradient (Gamid-PG), encourages policy entropy maximization. To this end, we define the GMM entropy gradient using Varia- tional Approximation of the KL-divergence between the GMM’s component Gaussians. We compare Gamid-PG with common stochastic policy gradient methods on benchmark dense- reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper- forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis- tic gradient-based methods while performing worse than stochastic policy gradient methods. Consequently, we conclude that GMMs optimized using deterministic policy gradients (1) should be favorably considered over stochastic gradients in dense-reward continuous control tasks, and (2) improve upon single-actor deterministic gradients. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)