- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dey, Sheelabhadra (1)
-
Li, Yukun (1)
-
Liu, Li-Ping (1)
-
Sharon, Guni (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
Kamath, Gautam (2)
-
Larochelle, Hugo (2)
-
Murray, Naila (2)
-
Shah, Nihar B (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)Gaussian Mixture Models (GMMs) have been recently proposed for approximating actors in actor-critic reinforcement learning algorithms. Such GMM-based actors are commonly optimized using stochastic policy gradients along with an entropy maximization objective. In contrast to previous work, we define and study deterministic policy gradients for optimiz- ing GMM-based actors. Similar to stochastic gradient approaches, our proposed method, denoted Gaussian Mixture Deterministic Policy Gradient (Gamid-PG), encourages policy entropy maximization. To this end, we define the GMM entropy gradient using Varia- tional Approximation of the KL-divergence between the GMM’s component Gaussians. We compare Gamid-PG with common stochastic policy gradient methods on benchmark dense- reward MuJoCo tasks and sparse-reward Fetch tasks. We observe that Gamid-PG outper- forms stochastic gradient-based methods in 3/6 MuJoCo tasks while performing similarly on the remaining 3 tasks. In the Fetch tasks, Gamid-PG outperforms single-actor determinis- tic gradient-based methods while performing worse than stochastic policy gradient methods. Consequently, we conclude that GMMs optimized using deterministic policy gradients (1) should be favorably considered over stochastic gradients in dense-reward continuous control tasks, and (2) improve upon single-actor deterministic gradients.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Li, Yukun; Liu, Li-Ping (, Transactions on machine learning research)Larochelle, Hugo; Murray, Naila; Kamath, Gautam; Shah, Nihar B (Ed.)
An official website of the United States government

Full Text Available